The science of the 21st century demands modern computing facilities connected to sustainable hardware path; an experienced operational team; a strategy for research challenges.

The National Leadership Computing Facility (NLCF) engages a world-class team from national laboratories, research institutions, computing centers, universities, and vendors to take a dramatic step forward to field a new capability for high-end science. Our team offers the Office of Science an aggressive deployment plan, using technology designed to maximize the performance of scientific applications, and a means of engaging the scientific and engineering communities. Combining these resources and building upon expertise and resources of the partner, the NLCF will enable scientific computation at an unprecedented scale.

This presentation will describe how the NLCF will bring together world-class researchers; a proven, aggressive, and sustainable hardware path; an experienced operational team; a strategy for delivering true capability computing; and modern computing facilities connected to the national infrastructure through state-of-the-art networking to deliver breakthrough science.

After-Dinner Speaker: James Maas
Cornell University, “Everything you should know about sleep but are too tired to ask”. Wednesday, November 17, 2004 at The Westin Hotel: Cocktails - Harbor Ballroom - 6:30 p.m. Banquet - Grand Ballroom - 7:30 p.m.

Dr. James B. Maas is Professor and past Chairman of Psychology, Stephen H. Weiss Presidential Fellow, and a member of the graduate fields of Education and Communication at Cornell University. He received his B.A. from Williams College and his M.A. and Ph.D. from Cornell. He teaches introductory psychology to 1,600 students in the world’s largest single lecture class, and conducts research on sleep and performance, as well as on leadership and critical thinking.

Dr. Maas has held a Fulbright Senior Professorship to Sweden, has been a visiting professor at Stanford University and past-president of the American Psychological Association’s Division on Teaching. He received the Clark Award for Distinguished Teaching at Cornell, and is the recipient of the American Psychological Association’s Distinguished Teaching Award. He is also a noted filmmaker who has produced nine national television specials for PBS in this country, for the BBC in England, the CBC in Canada, and for Dutch, Danish and Swedish National Television. His films for such organizations as the National Geographic Society, General Motors, Exxon, Upjohn, Metropolitan Life, the McArthur Foundation and the United States Department of Transportation have won 42 major film festivals.

Dr. Maas has presented highly acclaimed programs for such organizations as Young President’s Organization (YPO), World Presidents’ Organization (WPO), World Business Council (WBC), the American Society of Association Executives (ASAE), Eastman Kodak, IBM, US Navy, and many other organizations. He also works with many sports teams and professional athletes. Dr. Maas’ book, Power Sleep, published by Random House and HarperCollins, is a New York Times best-seller, published in 10 languages and receiving international acclaim. His latest venture, Remmy and the Brain Train, is a children’s bedtime story designed to help improve daytime alertness, mood and performance. In the past three years there have been over 200 articles in the popular press about Dr. Maas’ work on sleep and performance. He appears frequently on national television such as the TODAY Show, NBC Nightly News, CNN, Good Morning America, CBS This Morning, ABC 20/20 and Oprah.

The National Leadership Computing Facility
Delivering Computational Science for the Nation
Tuesday, November 16, 18:00 hours, Chatham Ballroom C, Savannah Convention Center.

Presiding: Thomas Zacharia, Oak Ridge National Laboratories

Abstract

The science of the 21st century demands computational capability well beyond what is available today. These demands cannot be met by simply fielding a computer that is #1 on the Top500 list. Rather, breakthrough science and engineering requires: an architecture well suited for scientific applications; a computational environment that ensures effective utilization of that architecture for scientific discovery; a best-in-class communications network and data management infrastructure; and teams of leading experts applying this capability to critical research challenges.

The National Leadership Computing Facility (NLCF) engages a world-class team from national laboratories, research institutions, computing centers, universities, and vendors to take a dramatic step forward to field a new capability for high-end science. Our team offers the Office of Science an aggressive deployment plan, using technology designed to maximize the performance of scientific applications, and a means of engaging the scientific and engineering communities. Combining these resources and building on expertise and resources of the partnership, the NLCF will enable scientific computation at an unprecedented scale.

This presentation will describe how the NLCF will bring together world-class researchers; a proven, aggressive, and sustainable hardware path; an experienced operational team; a strategy for delivering true capability computing; and modern computing facilities connected to the national infrastructure through state-of-the-art networking to deliver breakthrough science.

Town Meeting on FESAC Priorities Panel
Tuesday, November 16, 18:30, Chatham Ballroom C, Savannah Convention Center

Presiding: Charles Baker, Sandia National Labs

The status of the work of the FESAC Panel on Priorities will be described. Substantial time will be devoted to questions, comments and discussion.

Invited Paper Poster Sessions
Poster versions of review, invited, and tutorial papers are optional and are scheduled Monday through Friday, in the following half-day session, in a designated area of Exhibit Hall A. For example, the Monday morning review and invited talks may also be presented as posters in the Monday afternoon poster session. This option will be available on Monday morning for invited papers scheduled on Friday morning.

Women in Plasma Physics
Luncheon
Monday, November 15, 12 noon to 1:30 p.m. Harbor Ballroom A, Westin Hotel

Professors Halima Ali, Hampton University, and Linda Vahala, Old Dominion University, will speak briefly about “Academic Career Paths in Plasma Physics” during the luncheon. Cost for lunch will be $25, except for graduate and undergraduate women who will pay $5, partially supported by the DPP.

Reception
Monday, November 15, 5:15 p.m. to 6:45 p.m. Harbor Ballroom A, Westin Hotel

Plan to attend a complimentary reception for Women in Plasma Physics. Dr. Melissa Douglas of Los Alamos National Laboratory, vice chair of the division, will host the reception for women in physics.

National Leadership Computing Facility
Delivering Computational Science for the Nation
Tuesday, November 16, 18:00 hours, Chatham Ballroom C, Savannah Convention Center.

Presiding: Thomas Zacharia, Oak Ridge National Laboratories

Abstract

The science of the 21st century demands computational capability well beyond what is available today. These demands cannot be met by simply fielding a computer that is #1 on the Top500 list. Rather, break-through science and engineering requires: an architecture well suited for scientific applications; a computational environment that ensures effective utilization of that architecture for scientific discovery; a best-in-class communications network and data management infrastructure, and teams of leading experts applying this capability to critical research challenges.

The National Leadership Computing Facility (NLCF) engages a world-class team from national laboratories, research institutions, computing centers, universities, and vendors to take a dramatic step forward to field a new capability for high-end science. Our team offers the Office of Science an aggressive deployment plan, using technology designed to maximize the performance of scientific applications, and a means of engaging the scientific and engineering communities. Combining these resources and building on expertise and resources of the partnership, the NLCF will enable scientific computation at an unprecedented scale.

This presentation will describe how the NLCF will bring together world-class researchers; a proven, aggressive, and sustainable hardware path; an experienced operational team; a strategy for delivering true capability computing; and modern computing facilities connected to the national infrastructure through state-of-the-art networking to deliver breakthrough science.

Invited Paper Poster Sessions
Poster versions of review, invited, and tutorial papers are optional and are scheduled Monday through Friday, in the following half-day session, in a designated area of Exhibit Hall A. For example, the Monday morning review and invited talks may also be presented as posters in the Monday afternoon poster session. This option will be available on Monday morning for invited papers scheduled on Friday morning.

DPP Banquet
After-Dinner Speaker: James Maas
Cornell University, “Everything you should know about sleep but are too tired to ask”. Wednesday, November 17, 2004 at The Westin Hotel: Cocktails - Harbor Ballroom - 6:30 p.m. Banquet - Grand Ballroom - 7:30 p.m.

Dr. James B. Maas is Professor and past Chairman of Psychology, Stephen H. Weiss Presidential Fellow, and a member of the graduate fields of Education and Communication at Cornell University. He received his B.A. from Williams College and his M.A. and Ph.D. from Cornell. He teaches introductory psychology to 1,600 students in the world’s largest single lecture class, and conducts research on sleep and performance, as well as on leadership and critical thinking.

Dr. Maas has held a Fulbright Senior Professorship to Sweden, has been a visiting professor at Stanford University and past-president of the American Psychological Association’s Division on Teaching. He received the Clark Award for Distinguished Teaching at Cornell, and is the recipient of the American Psychological Association’s Distinguished Teaching Award. He is also a noted filmmaker who has produced nine national television specials for PBS in this country, for the BBC in England, the CBC in Canada, and for Dutch, Danish and Swedish National Television. His films for such organizations as the National Geographic Society, General Motors, Exxon, Upjohn, Metropolitan Life, the McArthur Foundation and the United States Department of Transportation have won 42 major film festivals.

Dr. Maas has presented highly acclaimed programs for such organizations as Young President’s Organization (YPO), World Presidents’ Organization (WPO), World Business Council (WBC), the American Society of Association Executives (ASAE), Eastman Kodak, IBM, US Navy, and many other organizations. He also works with many sports teams and professional athletes. Dr. Maas’ book, Power Sleep, published by Random House and HarperCollins, is a New York Times best-seller, published in 10 languages and receiving international acclaim. His latest venture, Remmy and the Brain Train, is a children’s bedtime story designed to help improve daytime alertness, mood and performance. In the past three years there have been over 200 articles in the popular press about Dr. Maas’ work on sleep and performance. He appears frequently on national television such as the TODAY Show, NBC Nightly News, CNN, Good Morning America, CBS This Morning, ABC 20/20 and Oprah.
Coffee Break Locations and Times

Georgia International Gallery, Second Floor and River Concourse, First Floor:
- Monday - Friday from 9:00 a.m. to 1:00 p.m.
- Monday - Thursday from 3:00 p.m. to 4:00 p.m.

Wednesday - Toroidal Confections - 9:00 a.m.

Note: Coffee will not be replenished.

Refreshments are available for purchase in the Exhibit Hall A and Tondze’s Snack Bar, Savannah Convention Center.

Mini-conference on Scattering, Acceleration and Propagation of Energetic Particles

Session BM2, Monday morning, 09:30, Room 105/106, SCC

An Invitation to Play with Plasma

Plasma Science, Thursday, November 18, 18:30 - 20:30, Exhibit hall B, Savannah Convention Center:

After a day of talking about plasma, sometimes you just want to get your hands dirty. That is what the APS-DPP Savannah Education Committee is offering with a Plasma Science Expo, Thursday, November 18, 16:30 - 8:30 in Exhibit Hall B. Hands-on demonstrations, games and exhibits from laboratory and institutions around the country and the world are waiting to be explored. Making light with a Van de Graaff generator, observe your fluctuating body temperature on a special monitor. Participate in a “flow bubble” demonstration, manipulate plasma with magnets, watch an electromagnetic wave demonstration, confine a plasma in a tokamak video game. This special evening is also open to the general public. Local college students and teachers are being encouraged to attend.

The event will also be held during the daytime on both Thursday and Friday for local middle and high schools. Contributing laboratories, institutes, and government agencies include: General Atomics; Lawrence Livermore National Laboratory; Princeton Plasma Physics Laboratory; Plasma Science and Fusion Center, Massachusetts Institute of Technology; Oak Ridge National Laboratory; Oak Ridge Institute for Science Education; Contemporary Physics Education Project (CPEP); Sandia National Laboratories; U.S. Department of Energy’s Office of Fusion Energy Sciences; U.S. Department of Energy Defense programs; University of California, San Diego, and many more.

Request for Registration

For more information on a special Thursday 18 and 19 by the Plasma Sciences Expo, please contact Rick Lee, or wish to learn more about these educational events, contact: Rick Lee, rlee@fusion.gat.

Dear Miss Plasma,

I’m a lonely little Roman god who can’t seem to find a target for my love arrows. I tried out for “Eliminate” but was sent packing right off the bat. Then I got voted off “Survivor” island without a paddle. And the “ Dante’s Gift” is not what I am used to. Where can I go to find my true love?

---Cupid

Dear Cupid,

I think you’ll find a target-rich environment at the Mini-Conference on Target Fabrication, where the Inertial Fusion Target Fabrication folks will present a bevy of well-rounded little ball’s eyes for you to shoot at. Keep your hand steady, your bowstring tight, and your aim true.

---Miss P

Posters

Tuesday morning, 09:30, Room Exhibit Hall A, SCC

EP1.120 Scattering and Propagation of Energetic Particles in Space and Astrophysics (mini-conference posters)

Session HM2, Wednesday morning, 09:30, Room 105/106, SCC

Ask Miss Plasma

Dear Miss Plasma,

I have been seeking to learn about energetic particles in high altitude plasmas, but no one will give me the time of day. What should I do?

---lost in Space

Dear Lies,

You are a devoted plasma physicist. Please do not continue to suffer alone. Stop by the Scattering, Acceleration and Propagation of Energetic Charged Particles in Space & Astrophysics Mini Conference this Monday and Wednesday in room 101L, for everything you always wanted to know about astro-particles (but might have been afraid to ask!)

---Miss P
Win a Nikon 8800 digital Camera!

This year, to applaud attendance for the full week of the 46th Annual Meeting of the DPP04 we are sponsoring a drawing for a very nice Nikon 8800 digital camera. Each meeting attendee who checks in at the meeting registration desk between the hours of 3:00 and 8:00 p.m. on Sunday, November 14 or 7:00 to 9:30 a.m. on Monday, November 15 can pick up a ticket stub for a camera. If you are present at that drawing, and if you have the matching number ticket stub with your name on it, the camera will be yours. Many thanks to Nikon for their generous donation.
Session NM2A. Thursday morning, 09:30, Room 105/106, SCC

Presiding: Nathaniel Fisch (PPPL)

09:30 NM2A.001 Opening Remarks by Roald Sagdeev
Roald Sagdeev (University of Maryland)

09:45 NM2A.002 Mechanisms of Electric Propulsion
N. J. Fisch (Princeton Plasma Physics Laboratory)

10:05 NM2A.003 The Challenges of High-Power Plasma Propulsion
Franklin Chang-Diaz (Advanced Space Propulsion Laboratory, NASA/JSC)

10:30 NM2A.004 Planetary Science Enabled by High-Power Ion Propulsion Systems
from NASA’s Prometheus Program
John Cooper (Raytheon Technical Services Company LLC, Space Science Data Operations Office, NASA Goddard Space Flight Center, Greenbelt, MD)

10:45 NM2A.005 High Power Hall Thrusters
David Muncy (NASA Glenn Research Center)

11:05 NM2A.006 Electrodeless Plasma Propulsion Research at NASA Glenn Research Center
James Gilland (Ohio Aerospace Institute)

11:25 NM2A.007 Electrospray Propulsion: a Review
Manuel Martinez-Sanchez (MIT)

11:50 NM2A.008 MHD scenario of plasma detachment in a magnetic nozzle
Alexey Arefev, Boris BREIZMAN (Institute for Fusion Studies, Univ. of Texas at Austin)

12:10 NM2A.009 Plasma Detachment Studies in the VASIMR Magnetic Nozzle
Alfonso G. Tardi (University of California, Berkeley, USA)

12:25 NM2A.010 Stability of Dipolar Magnetic Bubbles in 2- and 3-D
Homei Kaminabudi, Nick Omidi, Hoan Vu (Schroder In., Inc.), Don Winn (Los Alamos National Laboratory)

Posters Session NM2B. Thursday morning, 09:30, Room 105/106, SCC

NM2B.001 Multi-Scale Modeling of Plasma Thrusters
Oleg Batishchev (MIT)

NM2B.002 Adaptive Kinetic Simulation of Plasma Propulsion by Laser Ablation
Alia Batishtcheva (Delta Search Labs), Oleg Batishchev (MIT)

NM2B.003 Plasma Magnet: Using a Rotating Magnetic Field to Couple Thrust From the Solar Wind
Luis Giurcich, John Slough, Robert Winlife, Samuel Anderson (University of Washington)

NM2B.004 LIF Measurements of Ion Flow Downstream from a Double Layer
A. Reese, E. Snie (West Virginia University), C. Charles, R. Borissell (Australian National University)

13:25 NM2B.005 Initial expansion of a plasma sail
N. Omidi (SchoderIn., Inc.), D. Wedde (Los Alamos National Lab)

13:45 NM2B.006 Spectroscopic measurements of electron temperature on VX-10
Ella Sciacco, Charles Lee, Roger Bengston (University of Texas at Austin), Velin Jacobson, Frank Lasnaghi-Rodina, Greg McCaskill (Advanced Space Propulsion Laboratory, NASA/JSC)

14:05 NM2B.007 The effect of segmented electrodes on the electron temperature gradient in hall thrusters
David Stauak (Princeton Plasma Physics Laboratory), Jereyni Raithies, Nathaniel J. Fisch (PPPL)

14:25 NM2B.008 Simulation of Secondary Electron Emission Effects in a Plasma Slab in Crossed Electric and Magnetic Fields
D. Y. Sydorenko, A. I. Smolyakov (University of California at Berkeley, USA)

14:45 NM2B.009 Modeling of a MEAMS Pseudospark Microthruster
J. P. Verboncoeur, H. P. Chen, A. Minich (University of California at Berkeley)

15:05 NM2B.010 Superconducting Magnet Shielding of Astronauts from Cosmic Rays
Peter Fisher, Jeffrey Hoffman, Feng Zhou, Oleg Batishchev (Massachusetts Institute of Technology)

15:25 NM2B.011 Advancements in Dense Plasma Focus (DPF) Operation for Space Propulsion
George H. Miles (U of Illinois, UC Campus, 103 S Goodwin Ave. Urbana, IL 61801), Yang Yang, Peter Thomas (U of Illinois)

15:45 NM2B.012 Steady-State Ion Beam Plasma Focus (DPF) Operation for In-Space Thruster
Leondolf Dvorak, Jereyni Raithies, Nathaniel Fisch (Princeton Plasma Physics Laboratory)

16:05 NM2B.013 RF micro-discharge thruster
Alexandr Dvurechenskiy (Department of Astrophysical Sciences, Princeton University), Nathaniel Fisch (Princeton Plasma Physics Laboratory)

16:25 NM2B.014 Plasma Flow in a high-power thruster with anode layer
Michael Kueid, Ian Boyd (University of Michigan)

16:45 NM2B.015 The Plume in the Hall Thruster
Annoor Fruchtman (Beron Academic Institute of Technology, P. O. Box 305, Holon 56102, Israel)

17:00 NM2B.016 Experimental Investigation of Thruster Cathode Physics
Mark Crofton (The Aerospace Corporation)

17:15 NM2B.017 Time-resolved analysis of Hall effect thruster radiations: New insights into heavy particle transport phenomena
Stephane Maconnie (Laboratoire d’Aerodynamique, CNRS, France), Daniel Pignon (LPJGP Laboratory, University of Paris-Sud, France), Vincente (NASA/NRL), Wally Baily, Mark Carter, Rick Goulding (Oak Ridge National Laboratory)

17:30 NM2B.018 Plasma flow in a high-power thruster with anode layer
Michael Kueid, Ian Boyd (University of Michigan)

17:45 NM2B.019 Improved Analysis of Electron Emission Effects in a Plasma Thruster
Roger Bengston, Earl Sciacco, Charles Lee (University of Texas at Austin), Velin Jacobson, Frank Lasnaghi-Rodina, Greg McCaskill (Advanced Space Propulsion Laboratory, NASA/JSC)

18:00 NM2B.020 In-Space Thruster of NEXT 200-hour Wear Test Results
Julie Cooper (Propulsion Research Center, NASA Marshall Space Flight Center), Franklin Chang-Diaz (Advanced Space Propulsion Laboratory, NASA/JSC)

18:15 NM2B.021 Spectroscopy Measurements of Electric Field in the Near Field Plasma Plume
Kim Yang, Robert Thomas (U of Illinois), Oleg Batishchev (Massachusetts Institute of Technology)

18:30 NM2B.022 High Power Helicon In-Space Thruster
Timothy Ziemba, John Slough, Robert Winlife (University of Washington)

18:45 NM2B.023 Inductively coupled plasma source for VASIMR engineering
VA. Godyak (OSRAM SYLVANIA), A.I. Smolyakov (DPF Laboratory, University of California at Berkeley), Ralf Schneider (Max Planck Institute für Plasmaphysik, Greifswald (Germany))

19:00 NM2B.024 Plasma Jets with Advanced Simulations, Simulations and Experiments of Arbitrary Domains with In-Space Thruster
Abeer El-Digit, Oleg Batishchev (MIT), Stephan Fricke (Princeton Plasma Physics Laboratory)

19:15 NM2B.025 Failing Kinetic Modeling of a Hall-Effect Thruster with Central Cathode
Jui-Che Jan, Shounan Cheng, Oleg Batishchev, Manuel Martinez-Sanchez (MIT)

19:30 NM2B.026 Failing of Boundary Conditions on Near Field Plasma Plume Simulations
Jain Boyd (University of Michigan)

19:45 NM2B.027 High-Isp Hall Thruster Simulations and Experiments
James Sybonskas (USMC)

20:05 NM2B.028 High-Power Plasma Propulsion
Jain Boyd (University of Michigan)

Session RM2. Friday morning, 09:30, Room 105/106, SCC

Presiding: Alex Galimore (U of Michigan)

09:30 RM2.001 Improvement of optical diagnostic methods for a xenon operating thruster plasma
Georgy Kovalashvili (TIFM /NSHSS, Russia)

09:50 RM2.002 Cavity Ring-Down Spectroscopy Measurements of Electric Propulsion Device Life Time
Acer Yelin (Dept. Mechanical Engineering, Colorado State University)

10:10 RM2.003 Characterization of the Plasma Parameters in Electrostatic Ion Thrusters
Dan Guelcher (Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA)

10:30 RM2.004 High Power Helicon In-Space Thruster
Timothy Ziemba, John Slough, Robert Winlife (University of Washington)

10:50 RM2.005 Inductively coupled plasma source for VASIMR engineering
V.A. Godyak (OSRAM SYLVANIA), A.I. Smolyakov (DPF Laboratory, University of California at Berkeley), Ralf Schneider (Max Planck Institute für Plasmaphysik, Greifswald (Germany))

11:10 RM2.006 General Space Propulsion amg, MXER Plasma Requirements
Joseph Bonomini, Kirt Sorensen (NASA Ames Research Center)

11:30 RM2.007 The Plasmoid Thruster Experiment (PTX)
Adrian Arruda, Ron Estabrook, Mike Lee (Propulsion Research Center, NASA Marshall Space Flight Center, TD40), Steve Nejofs, Peter J. Finnegan III (University of Alabama Huntsville)

11:45 RM2.008 Self-organizing plasma behavior in multiple grid IEC fusion devices for propulsion
Thomas McCluskey, Carey Haydock, Raymond Sedwick (MIT Space Systems Laboratory)

12:00 RM2.009 Grid Free Plasma Free Simulations for Arbitrary Domains with Applications to Ion Optics
Andrei Cherkaev, Robert Krousko (University of Michigan), Department of Mathematics), Jerry Emhoff, Iain Boyd (University of Michigan, Department of Aerospace Engineering)
Call for Nominations for the second Katherine Weimer Award

The Division of Plasma Physics announced the establishment of a new DPP award in 2002, the Katherine E. Weimer Award. Its purpose is to recognize and encourage outstanding achievement in plasma science research by a woman physicist in the early years of her career. The award consists of $2,000 and funds for travel to any female plasma scientist. The nomination guidelines follow the standard APS guidelines cycle (three years). The nomination packages for 2005 should be sent to the chair of the committee:

Joel Fajans
University of California, Berkeley
Department of Physics
DeLancey Hall
Berkeley, CA 94720
Email: joel@plasma.berkeley.edu

There will not be online submission; however, electronic submissions may be emailed to Joel Fajans.

Call for Nominations for 2005 Prize and Awards

A prize or award presented by APS is one of the highest honors a physicist can receive. The DPP annually solicits nominations for one prize, two awards and one medal. The deadline for receipt of these nominations is Friday, April 1, 2005. Please take time to nominate exceptional DPP colleagues.

Anyone other than a member of the committee making the selection may submit one nomination or seconding letter for each prize or each award in any given year.

Go to this web address: http://www.aps.org/praw/nomguide.cfm for nomination guidelines.

The nomination package must be mailed to the chair of the appropriate DPP selection committee by Friday, April 1, 2005. Acknowledgement of receipt can be emailed upon your request to the selection committee chair. The dissertation award has other requirements in addition to those listed on the APS website, so check for descriptions of the prize and awards for which you are making a nomination.

James Clerk Maxwell Prize for Plasma Physics
Barbara Lasinski, Chair
Lawrence Livermore National Laboratory, L-39
PO Box 808
Livermore, CA 94551
Phone: 925-422-5443
Fax: 925-422-9208
Email: lasinski1@llnl.gov

Award for Excellence in Plasma Physics Research
Wendell Horan, Chair
University of Texas
Institute for Fusion Studies
Box 308030
For R. M. Buechler, 1950 Prize for Plasma Physics

James Clerk Maxwell Prize and Awards and the Savannah Convention Center will be available at the hotel registration desks and at the DPP Registration Desk.

DPP Shuttle Bus Schedule
Complimentary with official meeting badge. DPP shuttle bus service schedules between the meeting hotels (Days Inn, Hampton Inn, Hilton, Hyatt, and the Marriott) and the Savannah Convention Center will be available at the hotel registration desks and at the DPP Registration Desk.

Sunday, November 14
Route 1: Hampton, Hyatt, and Days Inn
Route 2: Hilton and Marriott
Shuttle service runs every 10 minutes from 14:30 to 20:30 between hotels and the convention center.

Monday - Thursday, November 15-18
Route 1: Hampton, Hyatt, and Days Inn
Route 2: Hilton and Marriott
Service begins at 6:30 and continues every 15 minutes until 8:30. Service changes to every 20 minutes from 8:30 until 15:30. Service changes to every 15 minutes at 15:30 and will continue until 20:30. Wednesday evening service will continue every 15 minutes until 23:00.

Friday, November 19
Route 1: Hampton, Hyatt, and Days Inn
Route 2: Hilton and Marriott
Shuttle service begins at 6:30 and continues every 20 minutes until 14:00.

Marshall Rosenbluth Memorial Session
Wednesday morning, November 17, 8:00-12:30, Chatham A/B
During the past half century, Marshall Rosenbluth has been acknowledged universally as one of the world’s most outstanding, productive and influential plasma physicists. He has contributed seminal work to almost every area of plasma physics, including the development of fundamental principles for the understanding of plasma confinement in magnetic and inertial fusion concepts and to fundamental advances in linear and nonlinear self-consistent kinetic theory. To acknowledge his professional impact in our field, as well as the personal affection DPP members have for him, the APS/Division of Plasma Physics is hosting a special session at DPP04 to honor Marshall. There will be a one hour review talk summarizing the scope of Marshall’s contributions in plasma physics. Then after a coffee/oroiden donut break, there will be six half-hour invited talks on present day research topics that have been significantly impacted by Marshall’s fundamental works in these fields.

The DPP Chronicle
Marshall Rosenbluth was a dominant force in the development of plasma and fusion science. It is difficult to find an aspect of the field to which he did not make substantial contribution. His contributions were recognized by the award of a number of major prizes, including the E.O Lawrence Prize, 1965; the Albert Einstein Prize, 1967; the Maxwell Prize, 1976; the Fermi Prize, 1985; the United States National Medal of Science, 1997; and the European Physical Society Hannes Alfvén Prize, 2002. Marshall was well known for his quick wit, his tireless advocacy of both magnetic and inertial confinement fusion, and especially for his seemingly endless major contributions to plasma physics. He was considered a friend by most with whom he dealt, both theorists and experimentalists, and from office staff to laboratory directors. He showed a special interest in recognizing the talents and contributions of younger scientists.